Article ID Journal Published Year Pages File Type
4561332 Food Research International 2015 8 Pages PDF
Abstract

•Shelf life determined by two independent loss criteria is described mathematically.•Degradation curves of two labile compounds are generated simultaneously.•Interactive program simulates double degradation in isothermal and dynamic storage.•Threshold passed first depends on its level, the kinetic and temperature history.•The principle is applicable to synthesis or mixed synthesis and degradation criteria.

The shelf life of food and pharmaceutical products is frequently determined by a marker's concentration or quality index falling below or surpassing an assigned threshold level. Naturally, different chosen markers would indicate different shelf life for the same storage temperature history. We demonstrate that if there are two markers, such as two labile vitamins, the order in which their concentrations cross their respective thresholds may depend not only on their degradation kinetic parameters but also on the particular storage temperature profile, be it isothermal or non-isothermal. Thus, at least theoretically, the order observed in accelerated storage need not be always indicative of the actual order at colder temperatures, except where the two degradation reactions follow the same kinetic order and their temperature-dependence rate parameter is also the same. This is shown with simulated hypothetical degradation reactions that follow first or zero order kinetics and whose rate constant's temperature-dependence obeys the exponential model. It is also demonstrated with simulated hypothetical Maillard reaction's products whose synthesis rather than their degradation follows pseudo zero order kinetics. The software developed to do the simulations and calculate the thresholds crossing points has been posted on the Internet as a freely downloadable interactive Wolfram Demonstration, which can be used as a tool in storage studies and shelf life prediction. In principle, the methodology can be extended from two to any number of markers.

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, ,