Article ID Journal Published Year Pages File Type
4562096 Food Research International 2011 9 Pages PDF
Abstract

The emulsifying (emulsion capacity, EC; emulsion activity/stability indices, EAI–ESI and creaming stability, CS) and physicochemical properties (surface charge/hydrophobicity, protein solubility, interfacial tension, and droplet size) of chickpea (ChPI), faba bean (FbPI), lentil (LPI), and pea (PPI) protein isolates produced by isoelectric precipitation and salt extraction were investigated relative to each other and a soy protein isolate (SPI). Both the legume source and method of isolate production showed significant effects on the emulsifying and physicochemical properties of the proteins tested. All legume proteins carried a net negative charge at neutral pH, and had surface hydrophobicity values ranging between 53.0 and 84.8 (H0-ANS), with PPI showing the highest value. Isoelectric precipitation resulted in isolates with higher surface charge and solubility compared to those produced via salt extraction. The EC values ranged between 476 and 542 g oil/g protein with LPI showing the highest capacity. Isoelectric-precipitated ChPI and LPI had relatively high surface charges (~−22.3 mV) and formed emulsions with smaller droplet sizes (~ 1.6 μm), they also displayed high EAI (~ 46.2 m2/g), ESI (~ 84.9 min) and CS (98.6%) results, which were comparable to the SPI.

Research Highlights► Emulsifying and physicochemical properties of protein isolates correlate strongly. ► Isoelectric-precipitated proteins showed good emulsifying properties. ► Chickpea and lentil proteins could serve as an alterative to soy – as emulsifiers.

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , ,