Article ID Journal Published Year Pages File Type
4564964 LWT - Food Science and Technology 2009 6 Pages PDF
Abstract

Apple (cv. Granny Smith) slices, 30-mm thick, were osmotically dehydrated for 9 h at 30 °C using glucose, sucrose and trehalose solutions with the same water activity (aw = 0.96). After OD treatment, water and solute content were analysed in 1.5-mm thick serial disks of the apple slices to determine the effect of osmotic dehydration on the compositional profiles. Diffusional and “Advancing Disturbance Front” (ADF) models were applied to the experimental data, both showing a good fit. Changes in the compositional profiles of osmotically dehydrated slices were also analysed throughout storage time. For this purpose, the 30-mm thick dehydrated slices were kept at 10 °C for 7 days in hermetic plastic bags and compositional profiles were analysed after 1, 2, 3 and 7 days and modelled using Fermi's equation. Throughout storage, the profiles became flatter due to the counter-current migration of water and solutes associated to the concentration gradients. Mass transfer rate during dehydration was faster when sucrose or glucose was used, but trehalose implied an increase in the mass transfer resistance of the tissue. This behaviour was also observed in the mass transfer processes during storage. This effect was attributed to the changes induced by trehalose in the permeability of cell membranes through component interactions.

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , , ,