Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4565383 | LWT - Food Science and Technology | 2006 | 9 Pages |
Abstract
The purpose of this study was to develop a predictive model for the heat inactivation of Listeria monocytogenes in monoculture (strains Scott A and 3990) and with competing bacteria (Pseudomonas sp. and Pantoea agglomerans) formed on buna-N rubber with and without the presence of food-derived soil. Biofilms were produced on rubber disks in dilute Tryptic Soy broth (dTSB) with incubation for 48 h at 25 °C. Duplicate biofilm samples were heat treated for 1, 3, 5, and 15 min at 70, 72, 75, 77 and 80 °C and tested for survivors using enrichment media. The experiment was repeated six times. A predictive model was developed and plots were generated showing the percent probability of L. monocytogenes inactivation in biofilms after heat treatment. For example, to achieve a 95% probability level of complete inactivation required heat treatment of 76 °C for 6 min. The predicted model was validated using a five-strain cocktail of L. monocytogenes. The validated prediction model indicates that with proper maintenance of the time/temperature controls L. monocytogenes in biofilms on rubber surfaces will be inactivated. This model can be used as a tool in the selection of hot water sanitation processes for rubber surfaces.
Keywords
Related Topics
Life Sciences
Agricultural and Biological Sciences
Food Science
Authors
R.A.N. Chmielewski, Joseph F. Frank,