Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
539863 | Microelectronic Engineering | 2010 | 5 Pages |
Sheet resistance of metal lines is mainly affected by critical dimension (CD), etch depth, and chemical mechanical planarization amount in damascene process. Therefore, these factors must be stably controlled in order to stabilize the sheet resistance of metal lines. Especially the etch depth, which is sensitive to the pattern density and the equipment conditions bring not only the variation of sheet resistance of metal lines but also the connection problem to the under-layered contacts. The objective of this study is to reduce the variation of the sheet resistance of metal lines by stabilization of the etch depth with etch stop layer (ESL). SiN film was used as an ESL while the intermetal dielectric (IMD) films were employed by the conventional fluorine-doped silicate glass (FSG)/SiH4 film with an increment of thickness by the employment of SiN film as an ESL. The selectivity of oxide-to-nitride was about 6.4:1 for etch stop step. While the stop layers were removed after the etch stop step, the pre-metal dielectric was also etched at the same time for the stable connection to the under-layered contacts. Comparing the ESL method to the conventional method, more stable metal lines were formed with the in-line CD measurement, thickness measurement, cross-sectional scanning electron microscopy analysis, and sheet resistance measurement from the view point of the connection to the under-layered contacts. The stable sheet resistance of metal lines was also obtained with the changes in etch time or thickness.