Article ID Journal Published Year Pages File Type
540346 Microelectronic Engineering 2011 4 Pages PDF
Abstract

In this paper we investigate the role of micropatterning and molecular coating for cell culture and differentiation of neuronal cells (Neuro2a cell line) on a polydimethylsiloxane substrate. We investigate arrays of micrometric grooves (line and space) capable to guide neurite along their axis. We demonstrate that pattern dimensions play a major role due to the deformation of the cell occasioned by grooves narrower than typical cell dimension. A technological compromise for optimizing cell density, differentiation rate and neurite alignment has been obtained for 20 μm wide grooves which is a dimension comparable with the average cell dimension. This topographical engineered pattern combined with double-wall carbon nanotubes coating enabled us to obtain adherent cell densities in the order of 104 cells/cm2 and a differentiation rate close to 100%.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , , , , ,