Article ID Journal Published Year Pages File Type
540603 Microelectronic Engineering 2010 5 Pages PDF
Abstract

Effect of abrasive particle concentration on material removal rate (MRR), MRR per particle and the surface quality in the preliminary chemical mechanical polishing (CMP) of rough glass substrate was investigated. Experimental results showed that the MRR increases linearly with the increase of abrasive concentration and reaches to the maximum when the abrasive concentration is 20 wt.%, and then tends to be stable. When the abrasive concentration increases from 2 to 5 wt.%, the MRR per particle increases greatly and reaches a peak. Then the MRR per particle decreases almost linearly with the increase of the abrasive concentration. The root mean squares (RMS) roughness almost decreases with increasing particle concentration. In addition, in situ coefficient of friction (COF) was also conducted during the polishing process and the zeta potentials of abrasive particles in slurry with different solid concentration were also characterized. Results show that COF value is not related to zeta potential but be sensitive to glass surface conditions in terms of rough peaks in preliminary polishing of glass substrate.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , ,