Article ID Journal Published Year Pages File Type
543236 Microelectronic Engineering 2009 4 Pages PDF
Abstract

Device performance characteristics are investigated for different surface orientation and doping concentration on accumulation-mode p-type and inversion-mode n-type MuGFETs. Short-channel effects and drain breakdown voltage are better is carrier transport is in the (1 0 0) direction than in the (1 1 0) direction. This is due to the larger Si/SiO2 interface roughness, the higher density of interface state at (1 1 0) surfaces, and to the difference of effective mass. The mobility in PMOS devices, however, is much higher in the (1 1 0) direction than that in the (1 0 0) direction. For better performance of device, our results show that optimized fin orientation can improve device stability and performance.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , , , , , , , ,