Article ID Journal Published Year Pages File Type
543354 Microelectronic Engineering 2009 5 Pages PDF
Abstract

This paper demonstrates the novel application of d.c. sputtered zinc oxide (ZnO) as a charge trapping dielectric material for the application of an organic thin film transistor (OTFT) based non-volatile memory (NVM). The motivation of using ZnO as a dielectric is due to its chemical stability and optical transparency, enabling future development of transparent electronic devices. Unbalanced magnetron d.c. sputtering with Ar:O2 ratio of 80:20 was used to obtained a ZnO dielectric of 50 nm thick. The ZnO has an optical band gap of 3.23 eV, resistivity and k-value of 5 × 107 Ω-cm and 50, respectively. The ZnO sandwiched between two layers of low-k methyl-silsesquioxane (MSQ) sol–gel dielectric creates a triple layer dielectric structure for charge storage. A solution-processable pentacene, 13,6-N-Sulfinylacetamodipentacene, was used as an active layer of an OTFT-NVM. It has been successfully demonstrated that this OTFT-NVM can be electrically programmed and erased at a low voltage.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , , , ,