Article ID Journal Published Year Pages File Type
544681 Microelectronic Engineering 2011 4 Pages PDF
Abstract

We report on the growth of epitaxial Fe/MgO heterostructures on Ge(0 0 1) by Molecular Beam Epitaxy. The better crystal quality and interfacial chemical sharpness at the oxide–semiconductor interface have been obtained by growing MgO at room temperature, followed by a post-annealing at 773 K, on top of a p(2 × 1)-Ge(0 0 1) clean surface. The growth of Fe at room temperature followed by annealing at 473 K gives the best epitaxial structure with optimized crystallinity of each layer compatible with limited chemical interdiffusion. Tunneling devices based on the epitaxial Fe/MgO/Ge heterostructure have been micro-fabricated and tested in order to probe the electrical properties of the MgO barrier. The current–voltage characteristics clearly show that tunneling is the dominant phenomenon, thus indicating that this system is very promising for practical applications in electronics and spintronics.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , , ,