Article ID Journal Published Year Pages File Type
545137 Microelectronic Engineering 2007 6 Pages PDF
Abstract

It is reported that the thermal stability of NiSi is improved by employing respectively the addition of a thin interlayer metal (W, Pt, Mo, Zr) within the nickel film. The results show that after rapid thermal annealing (RTA) at temperatures ranging from 650 °C to 800 °C, the sheet resistance of formed ternary silicide Ni(M)Si was less than 3 Ω/□, and its value is also lower than that of pure nickel monosilicide. X-ray diffraction (XRD) and raman spectra results both reveal that only the Ni(M)Si phase exists in these samples, but the high resistance NiSi2 phase does not. Fabricated Ni(M)Si/Si Schottky barrier devices displayed good I–V electrical characteristics, with the barrier height being located generally between 0.65 eV and 0.71 eV, and the reverse breakdown voltage exceeding to 40 V. It shows that four kinds of Ni(M)Si film can be considered as the satisfactory local connection and contact material.

Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, , , ,