Article ID Journal Published Year Pages File Type
5559959 Food and Chemical Toxicology 2017 7 Pages PDF
Abstract

•Permethrin decreased membrane GLUT4 and inhibited insulin signaling in C2C12.•Permethrin activated ERK without AMPKα activation in C2C12 myotubes.•Permethrin decreased AKT phosphorylation via ERK activation in C2C12 myotubes.

Previously 10 μM permethrin (38.7% cis and 59.4% trans isomers), a pyrethroid insecticide widely used in agriculture and household products for pest control, was reported to reduce insulin-stimulated glucose uptake and phosphorylation of protein kinase B (p-AKT) in C2C12 mouse myotubes. The underlying mechanisms on how permethrin decreases insulin-stimulated AKT phosphorylation, however, are unknown. Thus, the goal of this study was to determine the possible mechanism(s) through which permethrin reduced insulin-stimulated AKT phosphorylation in C2C12 myotubes. Permethrin treatment, at 10 μM, decreased insulin-stimulated membrane glucose transporter type 4 (GLUT4) and AKT phosphorylation, and increased insulin receptor substrate 1 (IRS1) Ser307 phosphorylation in the presence of insulin. The inactivation of AKT by permethrin was independent of AMPKα. ERK inactivation by U0126, however, restored insulin-stimulated AKT phosphorylation, which was decreased by permethrin treatment. These results suggest that permethrin decreased insulin-stimulated AKT phosphorylation via ERK activation, but not by AMPKα inactivation.

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , , , , , ,