Article ID Journal Published Year Pages File Type
5560029 Food and Chemical Toxicology 2017 7 Pages PDF
Abstract

•10% ethanolic extract of C. tricuspidata leaves reduced ethanol-induced hepatic damages.•10% ethanolic extract of C. tricuspidata leaves elevated antioxidant defense capacity.•10% ethanolic extract of C. tricuspidata leaves suppressed CYP2E1 activity and protein expression.

The hepatoprotective effect of 10% ethanolic extract of Curdrania tricuspidata (CTE) was investigated in HepG2/2E1 cells and C57BL/6 J mice. When compared ethanol-only treated HepG2/2E1 cells, pretreatment of CTE prevented increased intra-cellular reactive oxygen species levels and decreased antioxidant activities by ethanol-induced oxidative stress. In C57BL/6 J mice, CTE at a dose of 250 mg/kg/day was administered for 10 days, with ethanol (5 g/kg/day) administered for the final 3 days. Pretreatment with CTE prevented the elevated activities of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase caused by ethanol-induced hepatic damage. CTE-treated mice displayed a reduced level of malondialdehyde and increased antioxidant activities of catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase, as well as a reduced level of glutathione as compared with ethanol-only-treated mice. CTE-treated mice exhibited significant inhibition of CYP2E1 activities and expression. These results suggest that CTE could be a useful agent for the prevention of ethanol-induced oxidative damage in the liver, elevating antioxidative potentials and alleviating oxidative stress by suppressing CYP2El.

Graphical abstractDownload high-res image (154KB)Download full-size image

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , , , ,