Article ID Journal Published Year Pages File Type
5560126 Food and Chemical Toxicology 2017 8 Pages PDF
Abstract

•Titania food additives had a modest impact on individual bacterial abundance in a model intestinal ecosystem.•The gut environment likely attenuates the toxicity of nano-TiO2 to human gut microbiota.•Amylase supplementation confirmed the suitability of the test gut ecosystem.

Titanium dioxide (TiO2) nanoparticles (NPs) are used as an additive (E171 or INS171) in foods such as gum, candy and puddings. To address concerns about the potential hazardous effects of ingested NPs, the toxicity of these food-grade NPs was investigated with a defined model intestinal bacterial community. Each titania preparation (food-grade TiO2 formulations, E171-1 and E171-6a) was tested at concentrations equivalent to those found in the human intestine after sampling 1-2 pieces of gum or candy (100-250 ppm). At the low concentrations used, neither the TiO2 food additives nor control TiO2 NPs had an impact on gas production and only a minor effect on fatty acids profiles (C16:00, C18:00, 15:1 w5c, 18:1 w9c and 18:1 w9c, p < 0.05). DNA profiles and phylogenetic distributions confirmed limited effects on the bacterial community, with a modest decrease in the relative abundance of the dominant Bacteroides ovatus in favor of Clostridium cocleatum (−13% and +14% respectively, p < 0.05). Such minor shifts in the treated consortia suggest that food grade and nano-TiO2 particles do not have a major effect on human gut microbiota when tested in vitro at relevant low concentrations. However, the cumulative effects of chronic TiO2 NP ingestion remain to be tested.

Graphical abstractDownload high-res image (248KB)Download full-size image

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , , , ,