Article ID Journal Published Year Pages File Type
5740211 Food Microbiology 2017 11 Pages PDF
Abstract

•A legume enzyme hydrolysate was selected for its antifungal activity.•The antifungal activity and the activity spectrum were characterized.•Antifungal molecules were purified and identified.•Hydrolysate was used as ingredient in bread making.•The shelf-life of the bread artificially inoculated with molds was investigated.

Aiming at identifying antifungal compounds from plant matrices to be used as ingredients in the bakery industry, a water/salt-soluble extract (WSE) was produced from a legume enzyme hydrolysate, consisting of a mixture of pea, lentil, and faba bean flours, and assayed towards Penicillium roqueforti DPPMAF1. Agar diffusion assays allowed the selection of the optimal processing conditions for hydrolysis. As shown by hyphal radial growth rate, the inhibition was observed towards several fungi, including Aspergillus parasiticus CBS971.97, Penicillium carneum CBS 112297, Penicillium paneum CBS 101032, Penicillium polonicum 112490. A multi-step purification was carried out to identify the active compounds. The antifungal activity was attributed to native proteins (nsLTP, ubiquitin, lectin alpha-1 chain, wound-induced basic protein, defensin-1, defensin-2) and a mixture of peptides, which were released during hydrolysis. Nine peptides were purified and identified as sequences encrypted in legume vicilins, lectins and chitinases. WSE was used as ingredient for making bread under pilot plant conditions. Chemical, structural and sensory characterization of bread showed the lack of significant changes compared to control. The bread made with the legume hydrolysate had a longer shelf-life than that of the control.

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , , , ,