Article ID Journal Published Year Pages File Type
5850354 Food and Chemical Toxicology 2013 10 Pages PDF
Abstract

•Nanocalcium is more bioavailable than microcalcium due to the large surface area.•However, there is no efficient way to evaluate nanocalcium toxicity.•Our approach contributes to the quantification of the maximum concentration of nanocalcium for further repeated toxicity test.

Nano- and microcalcium provided from the KFDA were compared in terms of physico-chemical properties. Calcium samples were tested using EF-TEM and X-ray diffractometry to check for size/morphology and crystal formation, respectively. Two samples of nano- and microcalcium were selected for further evaluation by FE-SEM, DLS (nano-size, 200-500 nm; agglomerate, >5 μm; micro-size, 1.5-30 μm), and electron spin resonance. Both samples were heterogeneous in size, existed as single crystal and aggregated form, and did not generate reactive oxygen species. The specific surface area of nano- and microcalcium measured by N2 Brunauere Emmette Teller method was 12.90 ± 0.27 m2/g and 1.12 ± 0.19 m2/g, respectively. Inductively coupled plasma optical emission spectrometry analysis revealed the release of 2-3 times more calcium ion from nano- compared to microcalcium at pH 5 and 7. Genotoxicity and acute single-dose and repeated-dose 14-day oral toxicity testing in SD rats performed to evaluate the safety of nanocalcium did not reveal toxicity. However, long-term monitoring will be required for an unequivocal conclusion. A nanocalcium dose of 1 g/kg is recommended as the maximum dose for repeated dose 13-week oral toxicity. Further studies could provide details of toxicity of nanocalcium on the repeated dose 13-week oral toxicity test.

Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , , , , , ,