| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 5850552 | Food and Chemical Toxicology | 2014 | 9 Pages | 
Abstract
												Ursolic acid (UA) and corosolic acid (CA), naturally occurring pentacyclic triterpene acids, exhibit antiproliferative activities against various cancer cells, but a clear chemopreventive mechanism of these triterpenoids in colon cancer cells remains to be answered. Here we used a cell-based reporter system for detection of β-catenin response transcription (CRT) to identify UA as an antagonist of the Wnt/β-catenin pathway. UA promoted the degradation of intracellular β-catenin that was accompanied by its N-terminal phosphorylation at Ser33/37/Thr41 residues, marking it for proteasomal degradation. Consistently, UA down-regulated the intracellular β-catenin level in colon cancer cells with inactivating mutations of adenomatous polyposis coli (APC). In addition, UA repressed the expression of β-catenin/T-cell factor (TCF)-dependent genes, thereby inhibiting cell proliferation in colon cancer cells. The functional group analysis revealed that the major structural requirements for UA-mediated β-catenin degradation are a carboxyl group at position 17 and a methyl group at position 19. Notably, CA (2α-hydroxyursolic acid) was also found to decrease the level of intracellular β-catenin and to suppress the growth of APC-mutated colon cancer cells. Our findings suggest that UA and CA exert their anticancer activities against colon cancer cells by promoting the N-terminal phosphorylation and subsequent proteasomal degradation of β-catenin.
											Related Topics
												
													Life Sciences
													Agricultural and Biological Sciences
													Food Science
												
											Authors
												Joo-Hyun Kim, Young Ho Kim, Gyu-Yong Song, Dong-Eun Kim, Yong-Joo Jeong, Kwang-Hyeon Liu, Young-Hwa Chung, Sangtaek Oh, 
											