Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5850829 | Food and Chemical Toxicology | 2014 | 8 Pages |
Abstract
We aimed to develop a cell culture model of type 2 diabetes by treating SK-Hep-1 cells with four free fatty acids [i.e., palmitic acid, stearic acid (SA), linoleic acid and oleic acid]. The results showed that Akt phosphorylation was increased in SK-Hep-1 cells treated with insulin in a time- and concentration-dependent manner, which was inhibited by saturated fatty acids, but not by unsaturated fatty acids. Moreover, protein levels of NADPH oxidase (NOX) 4 but not NOX2 were increased following SA treatment and, consequently, increased reactive oxygen species production and decreased cellular glutathione were observed. Apocynin, a NOX4 inhibitor, restored the SA-induced inhibition of Akt phosphorylation, suggesting the role of NOX4 in insulin resistance induced by SA. Neither phosphorylation level nor protein level of the stress signaling kinases, such as c-Jun N-terminal kinase or p38 mitogen activated protein kinase, was changed by SA treatment. Although binding immunoglobulin protein, a marker of endoplasmic reticulum stress, was transiently increased in SKHep-1 cells treated with SA, 4-phenyl butyric acid, a chemical chaperone, had no effect on the insulin-mediated Akt phosphorylation inhibited by SA. The present study provides a useful model for screening anti-insulin resistance drugs and finding new drug targets for treatment of diabetes.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Food Science
Authors
Jung Min Oh, Jong Min Choi, Ji Yoon Lee, Soo Jin Oh, Bong Hee Kim, Sang Kyum Kim,