Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6290138 | International Journal of Food Microbiology | 2013 | 6 Pages |
Abstract
Supercritical carbon dioxide (SC-CO2) was used to inactivate Bacillus cereus spores inside biofilms, which were grown on stainless steel. SC-CO2 treatment was tested using various conditions, such as pressure treatment (10-30 MPa), temperature (35-60 °C), and time (10-120 min). B. cereus vegetative cells in the biofilm were completely inactivated by treatment with SC-CO2 at 10 MPa and at 35 °C for 5 min. However, SC-CO2 alone did not inactivate spores in biofilm even after the treatment time was extended to 120 min. When ethanol was used as a cosolvent with SC-CO2 in the SC-CO2 treatment using only 2-10 ml of ethanol in 100 ml of SC-CO2 vessel for 60-90 min of treatment time at 10 MPa and 60 °C, B. cereus spores in the biofilm were found to be completely inactivated in the colony-forming test. We also assessed the viability of SC-CO2-treated bacterial spores and vegetative cells in the biofilm by staining with SYTO 9 and propidium iodide. The membrane integrity of the vegetative cells was completely lost, while the integrity of the membrane was still maintained in most spores. However, when SC-CO2 along with ethanol was used, both vegetative cells and spores lost their membrane integrity, indicating that the use of ethanol as a cosolvent with SC-CO2 is efficient in inactivating the bacterial spores in the biofilm.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Food Science
Authors
Hyong Seok Park, Hee Jung Choi, Myoung-Dong Kim, Kyoung Heon Kim,