Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6402755 | LWT - Food Science and Technology | 2014 | 7 Pages |
â¢Color fixation during palm oil refining is not clear nor well described.â¢Type of bleaching earth may affect oil darkening due to oxidation reactions.â¢Inverse p-anisidine value correlation with color.â¢Darkening compounds derives from β-carotenes oxidation products.
Although studies indicate chemical changes during bleaching such as carotene and unsaturated fatty acids oxidation, which are probably responsible for the color fixation of palm oil, this process is not very clear. The objective of this study was to investigate the effect of type and amount of bleaching earth (BE) on the final quality of refined palm oils, especially on the oxidative state and color. Two types of bleaching earth were tested, one natural (NBE) and one acid-activated (ABE) (0.5-3.0% w/w). Crude palm oils were bleached at 105 °C, during 30 min at 50 mmHg pressure. Afterwards, a deodorization step was performed at 260 °C, 3 mbar, 1.5% steam during 60 min. These refining procedures were evaluated after each step by measuring β-carotene, color, peroxide (PV) and p-anisidine (pAV) values. It was observed that both BE can decompose peroxides. However, a maximum pAV followed by a decrease was observed for ABE while the pAV remains approximately constant at a maximum for NBE, suggesting only ABE catalytically decomposes secondary oxidation products. The color after deodorization was inversely proportional to pAV when bleaching was performed with ABE, even though the oil has a lighter color after deodorization.