Article ID Journal Published Year Pages File Type
6404524 LWT - Food Science and Technology 2014 8 Pages PDF
Abstract
We studied the ability of Lactobacillus pentosus 39, a BLS (Bacteriocin-like substance)-producing strain, to control the growth of Aeromonas hydrophila ATCC 14715 and Listeria monocytogenes ATCC 19117 artificially added to fresh salmon fillets at refrigeration temperatures and under simulated cold-chain break conditions.At refrigeration temperatures, Lb. pentosus 39 protective culture and its putative bacteriocin significantly reduced A. hydrophila counts compared with the control (2.1 and 1.4 log CFU/g reductions, respectively). Similar behaviour was observed for L. monocytogenes (3.6 and 1.3 log CFU/g reductions, respectively).Under simulated cold-chain break conditions, an increase in temperature (30°C for 12h) produced an evident increase in the development of A. hydrophila, L. monocytogenes, but also of Lb. pentosus 39, with a consequent increase in BLS production. This condition resulted in a greater reduction of both pathogens compared with samples stored at 4°C throughout the experiment (2.8 log CFU/g reduction for A. hydrophila, 5.8 log CFU/g reduction for L. monocytogenes). In samples treated with the putative bacteriocin alone, a less marked decrease was observed.Our study demonstrates the capability of Lb. pentosus 39 to control the growth of psychrotrophic bacteria in an experimental seafood model system. A similar biopreservation technology could provide more prolonged shelf-life during storage of ready-to-eat seafood, ensuring safety, even under extreme conditions.
Related Topics
Life Sciences Agricultural and Biological Sciences Food Science
Authors
, , , , , , ,