Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6942439 | Microelectronic Engineering | 2018 | 67 Pages |
Abstract
This paper presents a review of the current state-of-the-art in micropumping technology for biomedical applications. The review focuses particularly on the actuation schemes, flow directing methods and liquid chamber configurations used in the devices proposed over the past five years. A comparative study is presented of the various mechanical and non-mechanical micropumps proposed for biomedical applications. The performance of the various devices is compared in terms of their actuation voltage, power consumption, operating frequency range, flow rate, backpressure, and so forth. The basic operating principles and advantages of each method are introduced, and their limitations described where appropriate. The review provides a useful source of reference for selecting micropumping schemes capable of meeting the specific flow rate requirements of different biomedical applications. In general, the review is expected to be of interest to both seasoned researchers and practitioners in the micropumping and biomedical technology fields and those entering the field for the first time.
Related Topics
Physical Sciences and Engineering
Computer Science
Hardware and Architecture
Authors
Yao-Nan Wang, Lung-Ming Fu,