Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8843439 | Food Microbiology | 2018 | 10 Pages |
Abstract
The present study investigated the effect of ε-Polylysine on bacterial communities, sensorial, and chemical properties [total volatile basic nitrogen (TVB-N), biogenic amines, and breakdown products of adenosine triphosphate] of bighead carp (Aristichthys nobilis) fillets stored at 4â¯Â±â¯1â¯Â°C. Bacterial communities were explored by the culture-dependent method and the high-throughput sequencing targeting on 16S rRNA genes. The results showed that the major genera in spoiled control samples were Aeromonas, Pseudomonas, Shewanella, and Acinetobacter. ε-Polylysine inhibited the growth of Pseudomonas, Shewanella, and Acinetobacter. Consequently, Aeromonas and Janthinobacterium were dominant in spoiled treated samples. The sensorial shelf-life of the control and treated groups were 8 days and 10 days, respectively. Furthermore, due to the inhibitory effect of ε-Polylysine on bacteria, chemical changes of the treated group were slower, reflecting as lower concentrations of TVB-N, putrescine, cadaverine, and hypoxanthine, and higher contents of inosine 5â²-monophosphate and hypoxanthine riboside at the end of storage. In conclusion, ε-Polylysine altered the bacterial communities and delayed quality deterioration of bighead carp fillets during chilled storage.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Food Science
Authors
Xiaochang Liu, Dongping Li, Kaifeng Li, Yongkang Luo,