کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1941869 1536906 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Interplay of catalytic subsite residues in the positioning of α-d-glucose 1-phosphate in sucrose phosphorylase
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Interplay of catalytic subsite residues in the positioning of α-d-glucose 1-phosphate in sucrose phosphorylase
چکیده انگلیسی
Kinetic and molecular docking studies were performed to characterize the binding of α-d-glucose 1-phosphate (αGlc 1-P) at the catalytic subsite of a family GH-13 sucrose phosphorylase (from L. mesenteroides) in wild-type and mutated form. The best-fit binding mode of αGlc 1-P dianion had the phosphate group placed anti relative to the glucosyl moiety (adopting a relaxed 4C1 chair conformation) and was stabilized mainly by hydrogen bonds from residues of the enzyme׳s catalytic triad (Asp196, Glu237 and Asp295) and from Arg137. Additional feature of the αGlc 1-P docking pose was an intramolecular hydrogen bond (2.7 Å) between the glucosyl C2-hydroxyl and the phosphate oxygen. An inactive phosphonate analog of αGlc 1-P did not show binding to sucrose phosphorylase in different experimental assays (saturation transfer difference NMR, steady-state reversible inhibition), consistent with evidence from molecular docking study that also suggested a completely different and strongly disfavored binding mode of the analog as compared to αGlc 1-P. Molecular docking results also support kinetic data in showing that mutation of Phe52, a key residue at the catalytic subsite involved in transition state stabilization, had little effect on the ground-state binding of αGlc 1-P by the phosphorylase. However, when combined with a second mutation involving one of the catalytic triad residues, the mutation of Phe52 by Ala caused complete (F52A_D196A; F52A_E237A) or very large (F52A_D295A) disruption of the proposed productive binding mode of αGlc 1-P with consequent effects on the enzyme activity. Effects of positioning of αGlc 1-P for efficient glucosyl transfer from phosphate to the catalytic nucleophile of the enzyme (Asp196) are suggested. High similarity between the αGlc 1-P conformers bound to sucrose phosphorylase (modeled) and the structurally and mechanistically unrelated maltodextrin phosphorylase (experimental) is revealed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemistry and Biophysics Reports - Volume 2, July 2015, Pages 36-44
نویسندگان
, , , , ,