کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1958247 1057905 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Composition Effect on Peptide Interaction with Lipids and Bacteria: Variants of C3a Peptide CNY21
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Composition Effect on Peptide Interaction with Lipids and Bacteria: Variants of C3a Peptide CNY21
چکیده انگلیسی

The effect of peptide hydrophobicity and charge on peptide interaction with model lipid bilayers was investigated for the C3a-derived peptide CNY21 by fluorescence spectroscopy, circular dichroism, ellipsometry, z-potential, and photon correlation spectroscopy measurements. For both zwitterionic and anionic liposomes, the membrane-disruptive potency for CNY21 variants increased with increasing net positive charge and mean hydrophobicity and was completely lost on elimination of all peptide positive charges. Analogous effects of elimination of the peptide positive net charge in particular were found regarding bacteria killing for both Pseudomonas aeruginosa and Bacillus subtilis. The peptides, characterized by moderate helix content both in buffer and when attached to the liposomes, displayed high adsorption for the net positively charged peptide variants, whereas adsorption was nonmeasurable for the uncharged peptide. That electrostatically driven adsorption represents the main driving force for membrane disruption in lipid systems was also demonstrated by a drastic reduction in both liposome leakage and peptide adsorption with increasing ionic strength, and this salt inactivation can be partly avoided by increasing the peptide hydrophobicity. This increased electrolyte resistance translates also to a higher antibacterial effect for the hydrophobically modified variant at high salt concentration. Overall, our findings demonstrate the importance of the peptide adsorption and resulting peptide interfacial density for membrane-disruptive effects of these peptides.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: - Volume 92, Issue 1, 1 January 2007, Pages 87–98
نویسندگان
, , , ,