کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1994877 1541292 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Excessive mechanical stress increases HMGB1 expression in human lung microvascular endothelial cells via STAT3
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Excessive mechanical stress increases HMGB1 expression in human lung microvascular endothelial cells via STAT3
چکیده انگلیسی


• High amplitude cyclic stretch increases HMGB1 expression in lung endothelial cells.
• STAT3 is critical to high amplitude cyclic stretch-induced HMGB1 expression.
• Oxidative stress augments HMGB1 expression.
• Low amplitude cyclic stretch attenuates oxidative- and LPS-induced HMGB1 expression.

Ventilator-induced lung injury (VILI) occurs when the lung parenchyma and vasculature are exposed to repetitive and excessive mechanical stress via mechanical ventilation utilized as supportive care for the adult respiratory distress syndrome (ARDS). VILI induces gene expression and systemic release of inflammatory mediators that contribute to the multi-organ dysfunction and morbidity and mortality of ARDS. HMGB1, an intracellular transcription factor with cytokine properties, is a late mediator in sepsis and ARDS pathobiology, however, the role of HMGB1 in VILI remains poorly described. We now report HMGB1 expression in human lung microvessel endothelial cells (ECs) exposed to excessive, equibiaxial mechanical stress, an in vitro correlate of VILI. We determined that high amplitude cyclic stretch (18% CS) increased HMGB1 expression (2–4-fold) via a signaling pathway with critical involvement of the transcription factor, STAT3. Concomitant exposure to 18% CS and oxidative stress (H2O2) augmented HMGB1 expression (~ 13 fold increase) whereas lipopolysaccharide (LPS) challenge increased HMGB1 expression in static EC, but not in 18% CS-challenged EC. In contrast, physiologic, low amplitude cyclic stretch (5% CS) attenuated both oxidative H2O2- and LPS-induced increases in HMGB1 expression, suggesting that physiologic mechanical stress is protective. These results indicate that HMGB1 gene expression is markedly responsive to VILI-mediated mechanical stress, an effect that is augmented by oxidative stress. We speculate that VILI-induced HMGB1 expression acts locally to increase vascular permeability and alveolar flooding, thereby exacerbating systemic inflammatory responses and increasing the likelihood of multi-organ dysfunction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microvascular Research - Volume 92, March 2014, Pages 50–55
نویسندگان
, , ,