کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2722995 1566747 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ablating Spinal NK1-Bearing Neurons Eliminates the Development of Pain and Reduces Spinal Neuronal Hyperexcitability and Inflammation From Mechanical Joint Injury in the Rat
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی عصب شناسی
پیش نمایش صفحه اول مقاله
Ablating Spinal NK1-Bearing Neurons Eliminates the Development of Pain and Reduces Spinal Neuronal Hyperexcitability and Inflammation From Mechanical Joint Injury in the Rat
چکیده انگلیسی

The facet joint is a common source of pain, especially from mechanical injury. Although chronic pain is associated with altered spinal glial and neuronal responses, the contribution of specific spinal cells to joint pain is not understood. This study used the neurotoxin [Sar9,Met(O2)11]-substance P-saporin (SSP-SAP) to selectively eliminate spinal cells expressing neurokinin-1 receptor (NK1R) in a rat model of painful facet joint injury to determine the role of those spinal neurons in pain from facet injury. Following spinal administration of SSP-SAP or its control (blank-SAP), a cervical facet injury was imposed and behavioral sensitivity was assessed. Spinal extracellular recordings were made on day 7 to classify neurons and quantify evoked firing. Spinal glial activation and interleukin 1αα (IL1α) expression also were evaluated. SSP-SAP prevented the development of mechanical hyperalgesia that is induced by joint injury and reduced NK1R expression and mechanically evoked neuronal firing in the dorsal horn. SSP-SAP also prevented a shift toward wide dynamic range neurons that is seen after injury. Spinal astrocytic activation and interleukin 1α (IL1α) expression were reduced to sham levels with SSP-SAP treatment. These results suggest that spinal NK1R-bearing cells are critical in initiating spinal nociception and inflammation associated with a painful mechanical joint injury.PerspectiveResults demonstrate that cells expressing NK1R in the spinal cord are critical for the development of joint pain, spinal neuroplasticity, and inflammation after trauma to the joint. These findings have utility for understanding mechanisms of joint pain and developing potential targets to treat pain.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of Pain - Volume 15, Issue 4, April 2014, Pages 378–386
نویسندگان
, ,