کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3075120 1580960 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fibromyalgia is characterized by altered frontal and cerebellar structural covariance brain networks
ترجمه فارسی عنوان
فیبرومیالژیا با شبکه های مغزی کوواریانس ساختاری مغزی و مغزی تغییر یافته است
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی روانپزشکی بیولوژیکی
چکیده انگلیسی


• We conducted structural covariance and tractography analyses in fibromyalgia.
• In fibromyalgia, higher correlations between cerebellar ROI volumes were found.
• In controls, higher correlations between frontal ROI volumes were found.
• Volume of cerebellum, orbitofrontal and inferior parietal areas correlated with BDI.
• WM fiber numbers connecting the areas associated with hyperalgesia and clinical pain

Altered brain morphometry has been widely acknowledged in chronic pain, and recent studies have implicated altered network dynamics, as opposed to properties of individual brain regions, in supporting persistent pain. Structural covariance analysis determines the inter-regional association in morphological metrics, such as gray matter volume, and such structural associations may be altered in chronic pain. In this study, voxel-based morphometry structural covariance networks were compared between fibromyalgia patients (N = 42) and age- and sex-matched pain-free adults (N = 63). We investigated network topology using spectral partitioning, which can delineate local network submodules with consistent structural covariance. We also explored white matter connectivity between regions comprising these submodules and evaluated the association between probabilistic white matter tractography and pain-relevant clinical metrics. Our structural covariance network analysis noted more connections within the cerebellum for fibromyalgia patients, and more connections in the frontal lobe for healthy controls. For fibromyalgia patients, spectral partitioning identified a distinct submodule with cerebellar connections to medial prefrontal and temporal and right inferior parietal lobes, whose gray matter volume was associated with the severity of depression in these patients. Volume for a submodule encompassing lateral orbitofrontal, inferior frontal, postcentral, lateral temporal, and insular cortices was correlated with evoked pain sensitivity. Additionally, the number of white matter fibers between specific submodule regions was also associated with measures of evoked pain sensitivity and clinical pain interference. Hence, altered gray and white matter morphometry in cerebellar and frontal cortical regions may contribute to, or result from, pain-relevant dysfunction in chronic pain patients.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage: Clinical - Volume 7, 2015, Pages 667–677
نویسندگان
, , , , , , , , ,