کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4096706 1268569 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A multiscale structural investigation of the annulus-endplate anchorage system and its mechanisms of failure
ترجمه فارسی عنوان
یک تحقیق ساختاری چند محوری از سیستم لنگر زاویه حلقه ای و مکانیسم شکست آن
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی ارتوپدی، پزشکی ورزشی و توانبخشی
چکیده انگلیسی

Background contextThe annulus-endplate anchorage system performs a critical role in the disc, creating a strong structural link between the compliant annulus and the rigid vertebrae. Endplate failure is thought to be associated with disc herniation, a recent study indicating that this failure mode occurs more frequently than annular rupture.PurposeThe aim was to investigate the structural principles governing annulus-endplate anchorage and the basis of its strength and mechanisms of failure.Study designLoading experiments were performed on ovine lumbar motion segments designed to induce annulus-endplate failure, followed by macro- to micro- to fibril-level structural analyses.MethodsThe study was funded by a doctoral scholarship from our institution. Samples were loaded to failure in three modes: torsion using intact motion segments, in-plane tension of the anterior annulus-endplate along one of the oblique fiber angles, and axial tension of the anterior annulus-endplate. The anterior region was chosen for its ease of access. Decalcification was used to investigate the mechanical influence of the mineralized component. Structural analysis was conducted on both the intact and failed samples using differential interference contrast optical microscopy and scanning electron microscopy.ResultsTwo main modes of anchorage failure were observed—failure at the tidemark or at the cement line. Samples subjected to axial tension contained more tidemark failures compared with those subjected to torsion and in-plane tension. Samples decalcified before testing frequently contained damage at the cement line, this being more extensive than in fresh samples. Analysis of the intact samples at their anchorage sites revealed that annular subbundle fibrils penetrate beyond the cement line to a limited depth and appear to merge with those in the vertebral and cartilaginous endplates.ConclusionsAnnulus-endplate anchorage is more vulnerable to failure in axial tension compared with both torsion and in-plane tension and is probably due to acute fiber bending at the soft-hard interface of the tidemark. This finding is consistent with evidence showing that flexion, which induces a similar pattern of axial tension, increases the risk of herniation involving endplate failure. The study also highlights the important strengthening role of calcification at this junction and provides new evidence of a fibril-based form of structural integration across the cement line.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Spine Journal - Volume 15, Issue 3, 1 March 2015, Pages 405–416
نویسندگان
, , ,