کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4338716 1614878 2011 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dopamine release in the basal ganglia
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Dopamine release in the basal ganglia
چکیده انگلیسی

Dopamine (DA) is a key transmitter in the basal ganglia, yet DA transmission does not conform to several aspects of the classic synaptic doctrine. Axonal DA release occurs through vesicular exocytosis and is action potential- and Ca2+ -dependent. However, in addition to axonal release, DA neurons in midbrain exhibit somatodendritic release by an incompletely understood, but apparently exocytotic, mechanism. Even in striatum, axonal release sites are controversial, with evidence for DA varicosities that lack postsynaptic specialization, and largely extrasynaptic DA receptors and transporters. Moreover, DA release is often assumed to reflect a global response to a population of activities in midbrain DA neurons, whether tonic or phasic, with precise timing and specificity of action governed by other basal ganglia circuits. This view has been reinforced by anatomical evidence showing dense axonal DA arbors throughout striatum, and a lattice network formed by DA axons and glutamatergic input from cortex and thalamus. Nonetheless, localized DA transients are seen in vivo using voltammetric methods with high spatial and temporal resolution. Mechanistic studies using similar methods in vitro have revealed local regulation of DA release by other transmitters and modulators, as well as by proteins known to be disrupted in Parkinson's disease and other movement disorders. Notably, the actions of most other striatal transmitters on DA release also do not conform to the synaptic doctrine, with the absence of direct synaptic contacts for glutamate, GABA, and acetylcholine (ACh) on striatal DA axons. Overall, the findings reviewed here indicate that DA signaling in the basal ganglia is sculpted by cooperation between the timing and pattern of DA input and those of local regulatory factors.This article is part of a Special Issue entitled: Function and Dysfunction of the Basal Ganglia.

▶Dopamine is a key transmitter in the basal ganglia. ▶Dense axonal arbors and evidence for overlapping dopamine neuron activity argue against signaling specificity for dopamine. ▶However, discrete local regulation by transmitters and modulators alter release probability and phasic responsiveness to sculpt local signaling.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 198, 15 December 2011, Pages 112–137
نویسندگان
, , ,