کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4494012 1318688 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Simulation of fine sediment transport in oscillatory boundary layer
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Simulation of fine sediment transport in oscillatory boundary layer
چکیده انگلیسی

Sediment transport and resulting morphodynamics take place at vastly different spatial and temporal scales. Bottom boundary layer dynamics is one of the most critical small-scale processes controlling sediment transport. However, it is very challenging as it involves highly nonlinear turbulent flow phenomenon that occurs at a scale as small as Kolmogorov scales. The unsteady nature of the flow forcing in the coastal environment, such as waves, is another important factor that further complicates the process. This paper aims to take a step to better understand wave-driven turbulent boundary layer and corresponding transport process. The problem of wave-driven sediment transport is simplified into fully developed oscillatory channel flow. Particles are assumed to be fine and dilute and hence they can be approximately considered as passive except gravitational settling with its settling velocity estimated from Stokes' law. Highly accurate pseudo-spectral flow solver has been employed and Direct Numerical Simulation (DNS) is carried out to resolve all scales of flow turbulence without sub-grid closure. Sediment concentration is then updated via mass conservation. Clear fluid simulation for intermittently turbulent condition (i.e., Stokes Reynolds number ReΔ = 1000) is validated with earlier DNS results reported by Spalart and Baldwin [1989. Direct simulation of a turbulent oscillating boundary layer. Turbulent Shear Flows 6. Springer]. Fine sediment with dilute concentration is then added in the numerical simulation to study sediment suspension events under oscillatory flow. Suspension events are evaluated both qualitatively, by observing vortex structures, and quantitatively by the statistics of vertical fluxes. For fine particles and dilute concentration considered here, it is observed that particle phase is well-mixed in the boundary layer. Suspension is highly dependent on turbulent vortical structures at different wave phases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydro-environment Research - Volume 3, Issue 4, March 2010, Pages 247–259
نویسندگان
, , ,