کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5501027 1534621 2017 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
7,8-Dihydroxyflavone facilitates the action exercise to restore plasticity and functionality: Implications for early brain trauma recovery
ترجمه فارسی عنوان
7،8-دی هیدروکسی فلاوون تسهیل تمرینات ورزشی برای بازگرداندن پلاستیک و عملکرد را تسهیل می کند: پیامدهای بازیابی آسیب اولیه مغز
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
چکیده انگلیسی
Metabolic dysfunction accompanying traumatic brain injury (TBI) severely impairs the ability of injured neurons to comply with functional demands. This limits the success of rehabilitative strategies by compromising brain plasticity and function, and highlights the need for early interventions to promote energy homeostasis. We sought to examine whether the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) normalizes brain energy deficits and reestablishes more normal patterns of functional connectivity, while enhancing the effects of exercise during post-TBI period. Moderate fluid percussion injury (FPI) was performed and 7,8-DHF (5 mg/kg, i.p.) was administered in animals subjected to FPI that either had access to voluntary wheel running for 7 days after injury or were sedentary. Compared to sham-injured controls, TBI resulted in reduced hippocampal activation of the BDNF receptor TrkB and associated CREB, reduced levels of plasticity markers GAP-43 and Syn I, as well as impaired memory as indicated by the Barnes maze task. While 7,8-DHF treatment and exercise individually mitigated TBI-induced effects, administration of 7,8-DHF concurrently with exercise facilitated memory performance and augmented levels of markers of cell energy metabolism viz., PGC-1α, COII and AMPK. In parallel to these findings, resting-state functional MRI (fMRI) acquired at 2 weeks after injury showed that 7,8-DHF with exercise enhanced hippocampal functional connectivity, and suggests 7,8-DHF and exercise to promote increases in functional connectivity. Together, these findings indicate that post-injury 7,8-DHF treatment promotes enhanced levels of cell metabolism, synaptic plasticity in combination with exercise increases in brain circuit function that facilitates greater physical rehabilitation after TBI.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease - Volume 1863, Issue 6, June 2017, Pages 1204-1213
نویسندگان
, , , , , , , ,