کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5561985 1562590 2018 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Upper respiratory tract nociceptor stimulation and stress response following acute and repeated Cyfluthrin inhalation in normal and pregnant rats: Physiological rat-specific adaptions can easily be misunderstood as adversities
ترجمه فارسی عنوان
تحریک ناخودآگاه دستگاه تنفسی فوقانی و پاسخ استرس پس از استنشاق سیتوفلورتر حاد و مکرر در موشهای نرمال و حامله: سازگاری های خاص فیزیولوژیکی با موش ها به راحتی می تواند به عنوان بدبختی ها درک شود
کلمات کلیدی
هیپوترمی، رفلکس حسی دست نخورده، عملکرد قلب و عروق، وضعیت پایه اسید، سمیت رشدی،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
چکیده انگلیسی


- Acute chemosensations trigger adaptive responses in thermolabile rodents which could be misunderstood as adversity.
- Such sensations are dependent on afferent noceceptive threshold concentration.
- Threshold concentrations after single and repeated exposure of rats were indistinguishable.
- While the afferent stimulation thresholds were similar, their efferents were species-specifically different.
- Developmental inhalation toxicity studies have to observe rat-specific adaptive changes in the dams' physiology.

This paper reviews the results from past regulatory and mechanistic inhalation studies in rats with the type II pyrethroid Cyfluthrin. Apart from many chemical irritants, Cyfluthrin was shown to be a neuroexcitatory agent without any inherent tissue-destructive or irritant property. Thus, any Cyfluthrin-induced neuroexcitatory afferent sensory stimulus from peripheral nociceptors in the upper respiratory tract is likely to be perceived as a transient stimulus triggering annoyance and/or avoidance by both rats and humans. However, while thermolabile rats respond to such stresses reflexively, homeothermic humans appear to respond psychologically. With this focus in mind, past inhalation studies in rats and human volunteers were reevaluated and assessed to identify common denominators to such neuroexcitatory stimuli upon inhalation exposure. This analysis supports the conclusion that the adaptive physiological response occurring in rats secondary to such chemosensory stimuli requires inhalation exposures above the chemosensory threshold. Rats, a species known to undergo adaptively a hibernation-like physiological state upon environmental stresses, experienced reflexively-induced bradypnea, bradycardia, hypothermia, and changes in acid-base status during inhalation exposure. After cessation of the sensory stimulus, rapid recovery occurred. Physiological data of male and female rats from a 4-week repeated inhalation study (exposure 6-h/day, 5-times/week) were used to select concentration for a 10-day developmental inhalation toxicity study in pregnant rats. Maternal hypothermia and hypoventilation were identified as likely cause of fetal and placental growth retardations because of a maternal adaptation-driven reduced feto-placental transfer of oxygen. In summary, maternal reflex-hypothermia, reduced cardiac output and placental perfusion, and disruption of the gestation-related hyperventilation are believed to be the maternally mediated causes for developmental impairments. Thus, inhaled chemosensory substances may appear to be more toxic in rats than they will be in humans because the thermoregulatory response of rats to such stimuli can cause profound physiological adaptions that can easily be misunderstood as adversities in conventional inhalation studies in small rodents. The afferent threshold triggering such outcomes in rodents translate to perceptions of annoyance in humans. Consequently, hazard characterization and human risk assessment need to be focused on the chemosensory threshold rather than endpoints occurring downstream to rodent-specific homeostasis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Toxicology Letters - Volume 282, 5 January 2018, Pages 8-24
نویسندگان
,