کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5562227 1562606 2017 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
پیش نمایش صفحه اول مقاله
Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria
چکیده انگلیسی


- Trimethylamine-N-oxide (TMAO) impairs β-oxidation in cardiac mitochondria.
- TMAO decreases pyruvate metabolism via impaired substrate flux.
- Increased TMAO content induces energy metabolism disturbances in the heart.
- Increased TMAO concentration is a risk factor for heart failure progression.

Increased plasma concentration of trimethylamine N-oxide (TMAO), a proatherogenic metabolite, has been linked to adverse cardiovascular outcomes; however, it remains unclear whether TMAO is a biomarker or whether it induces direct detrimental cardiovascular effects. Because altered cardiac energy metabolism and mitochondrial dysfunction play crucial roles in the development of cardiovascular diseases, we hypothesized that increased TMAO concentration may alter mitochondrial energy metabolism. The aim of the present study was to determine the effects of TMAO on cardiac mitochondrial energy metabolism.Acute exposure of cardiac fibers to TMAO decreased LEAK (substrate-dependent) and OXPHOS (oxidative phosphorylation-dependent) mitochondrial respiration with pyruvate and impaired substrate flux via pyruvate dehydrogenase. The administration of TMAO at a dose of 120 mg/kg for 8 weeks increased TMAO concentration in plasma and cardiac tissues 22-23 times to about 15 μM and 11 nmol/g, respectively. Long-term TMAO administration decreased mitochondrial LEAK state respiration with pyruvate by 30% without affecting OXPHOS state respiration. However, no significant changes in mitochondrial reactive oxygen species production were observed after acute exposure of cardiac fibers to TMAO under physiological conditions. In addition, both long-term TMAO administration and acute exposure to TMAO decreased respiration with palmitoyl-CoA indicating impaired β-oxidation.Taken together, our results demonstrate that increased TMAO concentration impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Thus, the accumulation of TMAO in cardiac tissues leads to disturbances in energy metabolism that can increase the severity of cardiovascular events.

176

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Toxicology Letters - Volume 267, 5 February 2017, Pages 32-38
نویسندگان
, , , , , , , ,