کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5924075 1571186 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Down regulation of sodium channels in the central nervous system of hibernating snails
ترجمه فارسی عنوان
تنظیم پایین کانال های سدیم در سیستم عصبی مرکزی از حلزون خواب زمستانی
کلمات کلیدی
انطباق، â؟ کانال دستگیری ؟؟؟؟، خواب زمستانی، تنظیم مقر کانال سدیم، حلزون،
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی فیزیولوژی
چکیده انگلیسی


- We studied the regulation of voltage-gated sodium channel (NaV) in hibernating snail.
- Expression of the NaV1.8-like channels were down regulated during hibernation.
- The NaV1.9-like channels were presented independently from various activity states.
- The mechanisms of the “channel arrest” could be different in diverse NaV channel.

Hibernation, as behavior, is an evolutionary mode of adaptation of animal species to unfavorable environmental conditions. It is generally characterized by suppressed metabolism, which also includes down regulation of the energy consuming ion-channel functioning. Experimental data regarding decreased ion-channel function are scarce. Therefore, our goal was to study the possible down regulation of voltage-gated sodium channel (NaV) subtypes in the neurons of hibernating snails.Our immunohistochemical experiments revealed that the expression of NaV1.8-like channels in the central nervous system was substantially down regulated in hibernating animals. In contrast to NaV1.8-like, the NaV1.9-like channels were present in neurons independently from hibernating and non-hibernating states. Our western blot data supported the immunohistochemical results according to which the band of the NaV1.8-like channel protein was less intensively labeled in the homogenate of the hibernating snails. The NaV1.9-like immunoreactivity was equally present both in hibernating and active snails. Micro-electrophysiological experiments show that in hibernating snails both NaV1.8- and NaV1.9-like currents are substantially decreased compared to that of the active snails. The contradictory electrophysiological and immunohistochemical or western blot data suggest that the molecular mechanisms of the “channel arrest” could be different in diverse NaV channel subtypes.Climate changes will affect temperature extremes and a question is how different species beyond their physiological tolerance will or able to adapt to changing environment. Hibernation is an important mode of adaptation to extreme climatic variations, and pursuant to this the present results may contribute to the study of the behavioral ecology.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physiology & Behavior - Volume 131, 28 May 2014, Pages 93-98
نویسندگان
, , ,