کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6019388 1186550 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی عصب شناسی
پیش نمایش صفحه اول مقاله
A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation
چکیده انگلیسی

Reimplantation of avulsed rat lumbar spinal ventral roots results in poor recovery of function of the denervated hind limb muscles. In contrast, reimplantation of cervical or sacral ventral roots is a successful repair strategy that results in a significant degree of regeneration. A possible explanation for this difference could be that following lumbar root avulsion, axons have to travel longer distances towards their target muscles, resulting in prolonged denervation of the distal nerve and a diminished capacity to support regeneration. Here we present a detailed spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression following unilateral avulsion and implantation of lumbar ventral roots L3, L4, and L5. Reimplantation prolongs the survival of motoneurons up to one month post-lesion. The first regenerating motor axons entered the reimplanted ventral roots during the first week and large numbers of fibers gradually enter the lumbar plexus between 2 and 4 weeks, indicating that axons enter the reimplanted roots and plexus over an extended period of time. However, motor axon counts show that relatively few axons reach the distal sciatic nerve in the 16 week post-lesion period. The observed initial increase and subsequent decline in expression of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor correlate with the apparent spatio-temporal decline in the regenerative capacity of motor axons, indicating that the distal nerve is losing its capacity to support regenerating motor axons following prolonged denervation. These findings have important implications for future strategies to promote long-distance regeneration through distal, chronically denervated peripheral nerves.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Experimental Neurology - Volume 223, Issue 1, May 2010, Pages 207-220
نویسندگان
, , , ,