کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6271578 1614766 2015 45 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Age-dependent decline in density of human nerve and spinal ganglia neurons expressing the α3 isoform of Na/K-ATPase
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Age-dependent decline in density of human nerve and spinal ganglia neurons expressing the α3 isoform of Na/K-ATPase
چکیده انگلیسی
Ambulatory instability and falls are a major source of morbidity in the elderly. Age-related loss of tendon reflexes is a major contributing factor to this morbidity, and deterioration of the afferent limb of the stretch reflex is a potential contributing factor to such age-dependent loss of tendon reflexes. To evaluate this, we assessed the number and distribution of muscle spindle afferent fibers in human sacral spinal ganglia (S1) and tibial nerve samples obtained at autopsy, using immunohistochemical staining for the α3 isoform of Na+, K+-ATPase (α3NKA), a marker of muscle spindle afferents. Across all age groups, an average of 26 ± 4% of myelinated fibers of tibial nerve and 17 ± 2% of ganglion neuronal profiles were α3NKA-positive (n = 8 per group). Subject age explained 85% of the variability in these counts. The relative frequency of α3NKA-labeled fibers/neurons starts to decline during the 5th decade of life, approaching half that of young adult values in 65-year-old subjects. At all ages, α3NKA-positive neurons were among the largest of spinal ganglia neurons. However, as compared to younger subjects, the population of α3NKA-positive neurons from advanced-age subjects showed diminished numbers of large (both moderately and strongly labeled), and medium-sized (strongly labeled) profiles. Considering the critical significance of ion transport by NKA for neuronal activity, our data suggest that functional impairment and, also, most likely atrophy and/or degeneration of muscle spindle afferents, are mechanisms underlying loss of tendon reflexes with age. The larger and more strongly α3NKA-expressing spindle afferents appear to be proportionally more vulnerable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 310, 3 December 2015, Pages 342-353
نویسندگان
, , ,