کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8351111 1541860 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Age-dependent kainate sensitivity in heterozygous rolling Nagoya Cav2.1 channel mutant mice
ترجمه فارسی عنوان
حساسیت کایین وابسته به سن در موشهای موتانت کانال نواحی غربی هتروزیکوز ناقل است
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
چکیده انگلیسی
Cav2.1α1 is involved in glutamate release. The kainate-induced intensive firing of neurons via glutamate receptors causes seizure and neuronal damage, especially in the hippocampus. Cav2.1α1 mutation in homozygous rolling Nagoya (rol/rol) mice caused reduced Ca2 + permeability compared to wild-type mice. The rol/rol mice exhibited ataxia approximately after 2 weeks of age. Although we have reported that heterozygous rolling Nagoya (rol/+) mice show age-dependent behavioral changes, sensitivity to kainate has not been examined. To examine the relationship between Cav2.1 function and neurological disease, we investigated how Cav2.1 is related to kainate-induced seizure and neuronal damage using 2- and 18-month-old rol/+ mice. The seizure scores of 18-month-old rol/+ mice that received 20 mg/kg kainate intraperitoneally were significantly lower than those of wild-type mice. As a consequence of seizure, kainate induced delayed neuronal damage along with astrocytic growth in the hippocampus in wild-type mice, with a moderate effect observed in rol/+ mice. In the hippocampus of 18-month-old rol/+ mice, the levels of mutant-type Cav2.1α1 were increased compared to +/+ mice. The phosphorylation of p38, a mitogen-activated protein kinase (MAPK) activated by kainate, was not increased after kainate injection compared to +/+ mice. No difference was observed between 2-month-old rol/+ and wild-type mice intraperitoneally injected with 20 mg/kg kainate in these analyses. These findings suggest that rol/+ mice experience age-related changes in sensitivity to kainate due to changes in the p38 MAPK signaling pathway via a mutant Cav2.1 channel. Hence, rol/+ mice may represent a novel model to delineate the association between Cav2.1 function, synaptic transmission, and the postsynaptic signaling cascade.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pharmacology Biochemistry and Behavior - Volume 124, September 2014, Pages 250-259
نویسندگان
, , , , , ,