کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1055292 1485241 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evaluation of the influence of methane and copper concentration and methane mass transport on the community structure and biodegradation kinetics of methanotrophic cultures
ترجمه فارسی عنوان
بررسی تأثیر غلظت متان و مس و انتقال جرم متان بر ساختار جامعه و سینتیک تجزیه زیستی کشت های متانوتروفی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی


• A dominance of type I MB was recorded regardless of CH4 and Cu2+ concentration.
• The enrichment at high Cu2+ concentration exhibited three times higher qmax.
• Lower CH4 transfer rates favored non-methanotrophic microorganisms.
• An enhanced CH4 transfer resulted in higher specific CH4 biodegradation rates.

The environmental conditions during culture enrichment, which ultimately determine its maximum specific biodegradation rate (qmax) and affinity for the target pollutant (Ks), play a key role in the performance of bioreactors devoted to the treatment of methane emissions. This study assessed the influence of Cu2+ and CH4 concentration and the effective CH4 supply rate during culture enrichment on the structure and biodegradation kinetics of methanotrophic communities. The results obtained demonstrated that an increase in Cu2+ concentration from 0.05 to 25 μM increased the qmax and Ks of the communities enriched by a factor of ≈3, even if the Cu2+ concentration did not seem to have an effect on the enzymatic “copper switch” and only pMMO was detected. In addition, high Cu2+ concentrations supported lower diversity coefficients (Hs ≈ 1.5× lower) and apparently promoted the growth of more adapted methanotrophs such as Methylomonas. Despite no clear effect of CH4 concentration on the population structure or on the biodegradation kinetics of the communities enriched was recorded at the two low CH4 concentrations studied (1 and 8%), a higher agitation rate increased the qmax by a factor of ≈2.3 and Ks by a factor of ≈3.1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Environmental Management - Volume 171, 15 April 2016, Pages 11–20
نویسندگان
, , , ,