کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1101467 953569 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantitative Study for the Surface Dehydration of Vocal Folds Based on High-Speed Imaging
ترجمه فارسی عنوان
مطالعه کمی برای خشکی سطح سر و صدا با استفاده از تصویربرداری با سرعت بالا
کلمات کلیدی
مناطق کوهستانی امواج مخاطی، سطوح کم آبی، آزمایش حنجره صادر شده
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی بیماری های گوش و جراحی پلاستیک صورت
چکیده انگلیسی

SummaryObjectivesFrom the perspective of the glottal area and mucosal wave, quantitatively estimate the differences of vocal fold on laryngeal activity during phonation at three different dehydration levels.Study DesignControlled three sets of tests.MethodsA dehydration experiment for 10 excised canine larynges was conducted at 16 cm H2O. According to the dehydration cycle time (H), dehydration levels were divided into three degrees (0% H, 50% H, 75% H). The glottal area and mucosal wave under three dehydration levels were extracted from high-speed images and digital videokymography (DKG) image sequences. Direct and non-direct amplitude components were derived from glottal areas. The amplitude and frequency of mucosal wave were calculated from DKG image sequences. These parameters in condition of three dehydration levels were compared for statistical analysis.Results and DiscussionsThe results showed a significant difference in direct (P = 0.001; P = 0.005) and non-direct (P = 0.005; P = 0.016) components of glottal areas between every two different dehydration levels. Considering the right-upper, right-lower, left-upper, and left-lower of vocal fold, the amplitudes of mucosal waves consistently decreased with increasing of dehydration levels. But, there was no significant difference in frequency.ConclusionsSurface dehydration could give rise to complex variation of vocal fold on tissues and vibratory mechanism, which should need analyzing from multiple perspectives. The results suggested that the combination of glottal area and mucosal wave could be better to research the change of vocal fold at different dehydrations. It would become a better crucial research tool for the clinical treatment of dehydration-induced laryngeal pathologies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Voice - Volume 29, Issue 4, July 2015, Pages 403–409
نویسندگان
, , , ,