کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1163174 1490927 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development of a novel mixed hemimicelles dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene for the separation and preconcentration of fluoxetine in different matrices before its determination b
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Development of a novel mixed hemimicelles dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene for the separation and preconcentration of fluoxetine in different matrices before its determination b
چکیده انگلیسی


• Development of a novel mixed hemimicelles dispersive micro solid phase extraction.
• Utilization of IL coated magnetic graphene as efficient sorbent for SPME of fluoxetine.
• Application of homemade mode-mismatched TLS for quantification of the fluoxetine.
• Developed method showed the merits of very low LOD, rapidity and environmentally friendly.

This study aims at developing a novel, sensitive, fast, simple and convenient method for separation and preconcentration of trace amounts of fluoxetine before its spectrophotometric determination. The method is based on combination of magnetic mixed hemimicelles solid phase extraction and dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene as a sorbent. The magnetic graphene was synthesized by a simple coprecipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The retained analyte was eluted using a 100 μL mixture of methanol/acetic acid (9:1) and converted into fluoxetine-β-cyclodextrin inclusion complex. The analyte was then quantified by fiber optic linear array spectrophotometry as well as mode-mismatched thermal lens spectroscopy (TLS). The factors affecting the separation, preconcentration and determination of fluoxetine were investigated and optimized. With a 50 mL sample and under optimized conditions using the spectrophotometry technique, the method exhibited a linear dynamic range of 0.4–60.0 μg L−1, a detection limit of 0.21 μg L−1, an enrichment factor of 167, and a relative standard deviation of 2.1% and 3.8% (n = 6) at 60 μg L−1 level of fluoxetine for intra- and inter-day analyses, respectively. However, with thermal lens spectrometry and a sample volume of 10 mL, the method exhibited a linear dynamic range of 0.05–300 μg L−1, a detection limit of 0.016 μg L−1 and a relative standard deviation of 3.8% and 5.6% (n = 6) at 60 μg L−1 level of fluoxetine for intra- and inter-day analyses, respectively. The method was successfully applied to determine fluoxetine in pharmaceutical formulation, human urine and environmental water samples.

A novel, sensitive, fast, simple and convenient mixed hemimicelles dispersive micro solid phase extraction is developed for the separation and preconcentration of trace amounts of fluoxetine before its determination by mode-mismatched thermal lens spectroscopy.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytica Chimica Acta - Volume 905, 28 January 2016, Pages 85–92
نویسندگان
, , , , , ,