کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1252094 1496319 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fluorinated cholesterol retains domain-forming activity in sphingomyelin bilayers
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Fluorinated cholesterol retains domain-forming activity in sphingomyelin bilayers
چکیده انگلیسی

Lipid rafts are cholesterol (Chol)-rich microdomains floating in a sea of lipid bilayers. Chol is thought to interact preferentially with sphingolipids such as sphingomyelin (SM) rather than with glycerophospholipids, and this putative SM–Chol interaction is generally recognized as a requirement for raft formation. However, the presence of the specific interaction is still controversial, primarily because of the lack of useful molecular probes for scrutinizing this interaction. Recently, we reported that the dynamic properties of 6-F-Chol in DMPC bilayers are similar to those of unmodified Chol. Hence, in the present study, we first compared the roles of 6-F-Chol and Chol in SM bilayers through detergent insolubility, fluorescence polarization, and 2H NMR experiments. The results demonstrated that 6-F-Chol and Chol behave similarly in SM bilayers, whereas, in SM–DOPC membranes, 6-F-Chol is less effective in domain formation. Then, we analyzed the molecular orientation of 6-F-Chol in SM bilayers using solid-state NMR, and found that the dynamics and orientation of 6-F-Chol in SM bilayers are almost identical to those in DMPC bilayers. This supports the notion of the lack of a putative specific interaction between SM and Chol. Thus, this study demonstrates the utility of 6-F-Chol as a molecular probe for understanding molecular recognition in lipid rafts.


► 6-F-cholesterol (6-F-Chol) forms ordered membrane with sphingomyelin (SM).
► The efficiency is almost identical to that of cholesterol (Chol) in SM–sterol system.
► Orientation of 6-F-Chol in SM bilayers is almost identical to that in DMPC bilayers.
► 6-F-Chol is useful as a molecular probe for understanding lipid rafts.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemistry and Physics of Lipids - Volume 164, Issue 5, July 2011, Pages 401–408
نویسندگان
, , , ,