کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1299810 1498789 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Importance of covalence, conformational effects and tunneling-barrier heights for long-range electron transfer: Insights from dyads with oligo-p-phenylene, oligo-p-xylene and oligo-p-dimethoxybenzene bridges
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی معدنی
پیش نمایش صفحه اول مقاله
Importance of covalence, conformational effects and tunneling-barrier heights for long-range electron transfer: Insights from dyads with oligo-p-phenylene, oligo-p-xylene and oligo-p-dimethoxybenzene bridges
چکیده انگلیسی

This review reports on our recent studies of phototriggered charge transfer in rigid rod-like donor-bridge-acceptor molecules in liquid solution as well as between randomly dispersed electron donors and acceptors in frozen organic glasses. Investigation of the distance dependence of the rates of these reactions provides detailed insight into the various factors that govern long-range charge transfer efficiencies. The importance of covalence can be probed by a comparison of charge tunneling through a frozen toluene matrix to tunneling across an oligo-p-xylene bridge. The distance decay constants for these two processes are β = 1.26 Å−1 and β = 0.52 Å−1, respectively, indicating that charge tunneling across a covalent xylene–xylene contact is ∼2 orders of magnitude more efficient than that across a noncovalent toluene–toluene contact. Conformational effects were investigated by comparing hole tunneling across oligo-p-xylene and oligo-p-phenylene bridges. The latter are significantly more π-conjugated and mediate long-range hole tunneling with β = 0.21 Å−1 between a ruthenium–phenothiazine donor–acceptor couple. Quantitative analysis indicates that in this particular instance, tunneling across a phenylene–phenylene contact is roughly 50 times more efficient than tunneling across a xylene–xylene contact. The use of oligo-p-dimethoxybenzene wires instead of the structurally very similar oligo-p-xylene bridges was found to lead to a strong acceleration of long-range hole transfer rates: The 23.5-Å charge transfer step across four xylene units occurs within 20 μs, but the charge transfer over the same distance across four dimethoxybenzene units takes only 17 ns. This is attributed to a tunneling-barrier effect that is caused by a large difference in oxidation potentials between the two types of bridges.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Coordination Chemistry Reviews - Volume 254, Issues 21–22, November 2010, Pages 2584–2592
نویسندگان
, , ,