کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1422708 986458 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Calcium and phosphate ion releasing composite: Effect of pH on release and mechanical properties
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
پیش نمایش صفحه اول مقاله
Calcium and phosphate ion releasing composite: Effect of pH on release and mechanical properties
چکیده انگلیسی

ObjectivesSecondary caries and restoration fracture are the two main challenges facing tooth cavity restorations. The objective of this study was to develop a composite using tetracalcium phosphate (TTCP) fillers and whiskers to be stress-bearing, and to be “smart” to increase the calcium (Ca) and phosphate (PO4) ion release at cariogenic pH.MethodsTTCP was ball-milled to obtain four different particle sizes: 16.2, 2.4, 1.3, and 0.97 μm. Whiskers fused with nano-sized silica were combined with TTCP as fillers in a resin. Filler level mass fractions varied from 0 to 75%. Ca and PO4 ion releases were measured vs. time at pH of 7.4, 6, and 4. Composite mechanical properties were measured via three-point flexure before and after immersion in solutions at the three pH.ResultsTTCP composite without whiskers had flexural strength similar to a resin-modified glass ionomer (Vitremer) and previous Ca–PO4 composites. With whiskers, the TTCP composite had a flexural strength (mean ± S.D.; n = 5) of (116 ± 9) MPa, similar to (112 ± 14) MPa of a stress-bearing, non-releasing hybrid composite (TPH) (p > 0.1). The Ca release was (1.22 ± 0.16) mmol/L at pH of 4, higher than (0.54 ± 0.09) at pH of 6, and (0.22 ± 0.06) at pH of 7.4 (p < 0.05). PO4 release was also dramatically increased at acidic pH. After immersion, the TTCP–whisker composite matched the strength of TPH at all three pH (p > 0.1); both TTCP–whisker composite and TPH had strengths about threefold that of a releasing control.SignificanceThe new TTCP–whisker composite was “smart” and increased the Ca and PO4 release dramatically when the pH was reduced from neutral to a cariogenic pH of 4, when these ions are most needed to inhibit caries. Its strength was two- to threefold higher than previously known Ca–PO4 composites and resin-modified glass ionomer. This composite may have the potential to provide the necessary combination of load-bearing and caries-inhibiting capabilities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Dental Materials - Volume 25, Issue 4, April 2009, Pages 535–542
نویسندگان
, , ,