کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1428443 1509173 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nanomechanical characterization of heterogeneous and hierarchical biomaterials and tissues using nanoindentation: The role of finite mixture models
ترجمه فارسی عنوان
خصوصیات نانومکانیکی مواد بیولوژیکی و سلولهای ناهمگن و سلول ها با استفاده از نانوذرات: نقش مدل های مخلوط محدود
کلمات کلیدی
مدل های مخلوط محدود نانو انداختن، بافت نرم، مواد بیولوژیکی پلیمری نرم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
چکیده انگلیسی

Mechanical characterization of biological tissues and biomaterials at the nano-scale is often performed using nanoindentation experiments. The different constituents of the characterized materials will then appear in the histogram that shows the probability of measuring a certain range of mechanical properties. An objective technique is needed to separate the probability distributions that are mixed together in such a histogram. In this paper, finite mixture models (FMMs) are proposed as a tool capable of performing such types of analysis. Finite Gaussian mixture models assume that the measured probability distribution is a weighted combination of a finite number of Gaussian distributions with separate mean and standard deviation values. Dedicated optimization algorithms are available for fitting such a weighted mixture model to experimental data. Moreover, certain objective criteria are available to determine the optimum number of Gaussian distributions. In this paper, FMMs are used for interpreting the probability distribution functions representing the distributions of the elastic moduli of osteoarthritic human cartilage and co-polymeric microspheres. As for cartilage experiments, FMMs indicate that at least three mixture components are needed for describing the measured histogram. While the mechanical properties of the softer mixture components, often assumed to be associated with Glycosaminoglycans, were found to be more or less constant regardless of whether two or three mixture components were used, those of the second mixture component (i.e. collagen network) considerably changed depending on the number of mixture components. Regarding the co-polymeric microspheres, the optimum number of mixture components estimated by the FMM theory, i.e. 3, nicely matches the number of co-polymeric components used in the structure of the polymer. The computer programs used for the presented analyses are made freely available online for other researchers to use.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: C - Volume 48, 1 March 2015, Pages 150–157
نویسندگان
,