کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
151924 456483 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A critical study on the adsorption of heterocyclic sulfur and nitrogen compounds by activated carbon: Equilibrium, kinetics and thermodynamics
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
A critical study on the adsorption of heterocyclic sulfur and nitrogen compounds by activated carbon: Equilibrium, kinetics and thermodynamics
چکیده انگلیسی

Adsorption of heterocyclic sulfur and nitrogen compounds by activated carbon was studied using model diesel fuels, light cycle oils and shale oil. It is observed that the carbon favours adsorption of cyclic nitrogen compounds. This work also investigates the equilibrium, kinetics and thermodynamics of adsorption of nitrogen and sulfur compounds from diesel fractions by activated carbon. Quinoline, indole, and carbazole are typical N compounds while dibenzothiophene and 4,6-dimethyldibenzothiophene are the representatives of refractory S compounds in diesel fractions, were selected as the model compounds. The total N adsorbed by the activated carbon is more than the S compound. Comparing the three nitrogen compounds, quinoline shows a greater removal rate than indole and carbazole. Adsorptive removal kinetics for N/S compounds was monitored by a GC-FID (gas chromatograph coupled with flame ionization detector) technique and was found to follow pseudo second-order kinetics. The external diffusion is not a controlling step in the adsorption process. The isotherm indicates that activated carbon presents a highly heterogeneous surface in the adsorption of DBT, quinoline and indole, while a homogeneous surface is observed in the adsorption of carbazole. Negative adsorption free energy suggests that the adsorption process is favourable and spontaneous for all S/N compounds.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Journal - Volume 164, Issue 1, 15 October 2010, Pages 29–36
نویسندگان
, , , , ,