کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
156953 456954 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modelling of dense and complex granular flow in high shear mixer granulator—A CFD approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Modelling of dense and complex granular flow in high shear mixer granulator—A CFD approach
چکیده انگلیسی

In the aspect of granulation process control, the numerical simulations appear to be a cost-effective and flexible tool to investigate the flow structure of granular materials in mixer granulators of various configurations and operating conditions. Computational fluid dynamics (CFD) is used in this study to model the granular flow in a vertical high shear mixer granulator. The simulation is based on the continuum model of dense-gas kinetic theory [Gidaspow, D., Bezburuah, R., Ding, J., 1992. Hydrodynamics of circulating fluidized beds, kinetic theory approach. In: Fluidization, vol. VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization, Brisbane, Australia, pp. 75–82] with consideration of inter-particle friction force at dense condition [Schaeffer, D.G., 1987. Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations 66 (1), 19–50]. This study aims to verify this numerical method in modelling dense and complex granular flows, where the solids motion obtained from the simulation is validated against the experimental results of positron emission particle tracking (PEPT) technique [Ng, B.H., Kwan, C.C., Ding, Y.L., Ghadiri, M., Fan, X.F., 2007. Solids motion of calcium carbonate particles in a high shear mixer granulator: a comparison between dry and wet conditions. Powder Technology 177 (1), 1–11]. In general, the Eulerian based continuum model captures the main features of solids motion in high shear mixer granulator including the bed height and dominating flow direction (the tangential velocity). However, the continuum based kinetic-frictional model is not capable of capturing the complex vertical swirl pattern. Quantitative comparison shows over-predictions in the tangential velocity and stiff drops of the tangential velocity at the wall region. These results demonstrate the deficiency in transmitting forces in the bed of granular materials which indicate the necessity to improve the constitutive relations of dense granular materials as a continuum.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Science - Volume 64, Issue 16, 15 August 2009, Pages 3622–3632
نویسندگان
, , ,