کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1830789 1526485 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A high-brightness SRF photoelectron injector for FEL light sources
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم ابزار دقیق
پیش نمایش صفحه اول مقاله
A high-brightness SRF photoelectron injector for FEL light sources
چکیده انگلیسی

Most of the proposed electron accelerator projects for future FELs, ERLs or 4th generation light sources require electron beams with an unprecedented combination of high brightness, low emittance, and high average current. In all projects photoguns will be applied: DC-photoguns, normal conducting RF-photoguns (NC-guns), and superconducting RF photoguns (SRF-guns). While the concepts of DC- and NC-guns are well proofed, the SRF-gun development still possesses a high risk. Challenges are the design of the superconducting cavity, the choice of the photocathode type, its life time, a possible cavity contamination, the difficulty of coupling high average power into the gun, and, finally, the risk of beam excitation of higher-order cavity modes. In combination with SRF linacs, the SRF-guns seem to be the best solution for high average currents. Several R&D projects of SRF-gun have been launched. In this paper, we will give an overview of the progress of the SRF photoinjector development. In detail, the technical concept, the performance and the status of the Dresden Rossendorf SRF-gun project, a collaboration of BESSY, DESY, MBI and FZD, will be presented. The main design parameters of this SRF-gun are the final electron energy of 9.5 MeV, 1 mA average current, and transverse normalized emittances (rms) of 1 mm mrad at 77 pC and 2.5 mm mrad at 1 nC bunch charge. The 1.3 GHz cavity consists of three TESLA-shaped cells, a specially designed half-cell where the photocathode is placed and a choke filter in order to prevent RF losses at the cathode side. The normal-conducting photocathode with a Cs2Te photoemission layer is cooled by liquid nitrogen. The SRF-gun cryostat consists of a stainless steel vacuum vessel, a warm magnetic shield, a liquid nitrogen-cooled thermal shield and a titanium He tank with a two-phase supply tube. The 10 kW fundamental power coupler is adopted from the ELBE cryomodule. In a first commissioning and test period the gun will be operated in parallel to the accelerator. A diagnostic beamline will allow beam parameter measurement and further optimization of the SRF-gun. In a final step, the gun will be connected to the ELBE superconducting linear accelerator to deliver an improved electron beam to the user labs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment - Volume 593, Issues 1–2, 1 August 2008, Pages 57–62
نویسندگان
, , , , , , , , , , , , , , , , , , , ,