کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
218216 463188 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dual-functional zinc oxide aggregates with reaction time-dependent morphology as the dye-adsorption layer for dye-sensitized solar cells
ترجمه فارسی عنوان
مورفولوژی اکسید روی با دو عامل عملکردی با مورفولوژی وابسته به واکنش به عنوان لایه جذب رنگی برای سلول های خورشیدی حساسیت به رنگ
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


• Dual-functional ZnO aggregates are made using a low temperature aqueous solution.
• The reaction time plays a key role to control the morphology of ZnO aggregates.
• ZnO nanoflowers present higher dye loading and better light scattering abilities.
• ZnO nanoflower dye-sensitized solar cell attains a conversion efficiency of 4.41%.
• Low temperature annealing (< 150 °C) of ZnO film is a benefit to polymeric substrate.

High surface area and light scattering abilities are dispensable for a well-performed photoanode of dye-sensitized solar cells (DSSCs) to respectively provide abundant active sites for dye adsorption and enhance the light path for electron excitation. In this study, an energy-saving and cost-effective low-temperature (80 °C) aqueous solution method is applied to synthesize dual-functional ZnO aggregates which are composed of small nanocrystallites with the diameter of 20 nm. The reaction time plays a significant role in controlling the morphology of ZnO nanostructures. The ZnO aggregates are randomly oriented at the early stage and the flower-like morphology gradually forms when the reaction time reaches 4 h, while the well-defined structure is further destroyed when the reaction time is increased to 8 h. The growth mechanism is proposed to discuss the formation of ZnO nanoflower. The ZnO nanoflower-based DSSC achieves a light-to-electricity conversion efficiency (η) of 4.41%, which is higher than that for the cell with commercial ZnO nanoparticles on its photoanode (3.42%) under AM 1.5G simulated sunlight with an intensity of 100 mW/cm2. The electrochemical impedance spectroscopy (EIS) is also applied to analyze the electron transport parameters to understand the kinetics of electron transport in the ZnO films. The low-temperature (150 °C) fabrication process for preparing the highly-performed ZnO film also enables the future applications of flexible DSSCs with polymeric substrates.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Electroanalytical Chemistry - Volume 757, 15 November 2015, Pages 159–166
نویسندگان
, , ,