کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
218748 463217 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Method development for the determination of mercury(II) by sequential injection/anodic stripping voltammetry using an in situ gold-film screen-printed carbon electrode
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Method development for the determination of mercury(II) by sequential injection/anodic stripping voltammetry using an in situ gold-film screen-printed carbon electrode
چکیده انگلیسی


• A simple on-line medium exchange was achieved for elimination of the chloride effect.
• Two-step deposition potentials can be applied to the subsequently flowing solutions.
• The in situ Au-SPCE can be renewed and used in a long term analysis.
• SI-ASV can be used to obtain high sensitivity.
• The proposed method can be applied to chloride-rich sample analysis with good accuracy.

A computer-controlled system, included a sequential injection system and an electrochemical detector, was developed for the determination of mercury(II) ion (Hg2+) concentrations. The screen-printed carbon electrode (SPCE), a well-known low-cost electrode, was modified by overlaying in situ with a gold film (Au-SPCE). Square wave anodic stripping voltammetry (SWASV) using the Au-SPCE was performed with a two-step deposition potential of an initial −0.5 V vs Ag/AgCl for the preparation of the gold film and then a deposition potential of +0.2 V vs Ag/AgCl for the preconcentration of mercury. An on-line medium exchange method was included in the injection step to reduce the effect of chloride ions, whilst a solid phase extraction cartridge was used to remove interference for copper(II) ions. The flow pattern of the sequentially injected solutions with the synchronized two-step deposition potentials did not significantly affect the detection of Hg2+. Square wave parameters of a 4 mV step potential, 150 Hz frequency and 30 mV amplitude gave an optimal Hg2+ detection sensitivity with a limit of detection of 0.22 μg L−1 (sample volume of 0.9 mL) without any significant interference effect. This method was successfully applied to determine Hg2+ concentrations in real water samples, including in the chloride-rich samples of sea water and table salt, with very good accuracy (recovery in the range of 96.0–101%).

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Electroanalytical Chemistry - Volume 727, 1 August 2014, Pages 78–83
نویسندگان
, , , , ,